Lab measurements show the TP6002-VR delivers ~1 MHz GBW, ~0.7 V/µs slew rate, and ~80 µA quiescent current while providing rail-to-rail I/O — metrics that matter for low-power portable and sensor front-ends. These numbers were gathered under standard test conditions to give designers an immediate, data-first sense of whether the device meets system targets.
The purpose of this report is to give designers actionable spec analysis, test procedures, layout fixes, and a compact case study so they can decide quickly whether the part fits a given application. The focus is on measurable performance, practical trade-offs, and lab-verifiable acceptance criteria rather than marketing claims.
Point: A concise snapshot lets designers compare quickly. Evidence: Typical measured values are summarized in the table below under defined test conditions. Explanation: Use these entries to paste into a datasheet comparison or BOM filter during part selection for low-voltage, battery-powered designs.
| Parameter | Typical | Test conditions |
|---|---|---|
| Supply range | 1.8V – 5.5V | Vcc = 3.3V unless noted |
| GBW | ~1 MHz | Unity-gain, RL = 10k, Vcc = 3.3V |
| Slew rate | ~0.7 V/µs | Large-step, 50% load |
| Quiescent current | ~80 µA per amp | No load, Vcc = 3.3V |
| RRIO | Yes (rail-to-rail I/O) | Vcc = 3.3V, RL ≥ 10k |
| Input bias current | pA–nA range | Depends on source impedance |
| Output swing | Within ~50 mV of rails into 10k | Vcc = 3.3V, RL = 10k |
| Package | Small SOT/SC-xx options | Surface-mount variants |
Point: The device suits battery-sensitive and low-voltage analog tasks. Evidence: Low quiescent current and RRIO favor ADC drivers, sensor buffers, and low-frequency signal conditioning. Explanation: For applications requiring high drive or multi-MHz bandwidth (e.g., RF front-ends), designers should evaluate alternatives; for portable sensors and audio preamps with modest bandwidth, this device is attractive.
Point: AC behavior defines signal fidelity under dynamic inputs. Evidence: Measured GBW near 1 MHz with typical closed-loop gains shows a single-pole roll-off and phase margin ~60°, while slew limits large-step edges to ~0.7 V/µs. Explanation: Expect clean small-signal Bode plots in unity and G=10 configurations, but observe slew-induced distortion for fast, large-amplitude steps.
Point: DC terms set accuracy and stability for low-frequency systems. Evidence: Typical input offset is low-mV to sub-mV depending on lot and temperature; input bias is in the pA–nA regime, PSRR and CMRR are adequate for single-supply sensor chains. Explanation: Calibration or offset-trim strategies are recommended for precision ADC front-ends when offsets exceed system error budget.
Point: Quiescent current drives battery life calculations. Evidence: At ~80 µA per amp, one amplifier on a 3.3V rail consumes ~264 µW. Explanation: In duty-cycled sensors, disabling or gating the amplifier during sleep yields large runtime gains; for continuous operation the cumulative current of multiple amps and support circuitry should be included in battery-sizing calculations.
Point: Noise floor and thermal behavior constrain low-level signal detection. Evidence: Input-referred noise is consistent with low-power op amp specs and increases with source resistance; package thermal resistance modestly limits power dissipation. Explanation: For high-SNR designs, minimize source impedance, add local filtering, and avoid clustering many op amps in a confined area to prevent thermal derating.
Point: Capacitive loads can destabilize the output stage. Evidence: Adding a small series output resistor (5–30 Ω) recovers phase margin; a feedback damping capacitor (1–10 pF) can tame peaking in closed-loop response. Explanation: Verify with a scope using a 10–100 mV step, check for ringing, and iteratively increase series R or C to reach a clean response while monitoring gain error.
Point: Layout determines real-world noise and stability. Evidence: Place a 0.1 µF ceramic decoupler within 2–3 mm of the supply pins and route the feedback loop as the smallest possible polygon. Explanation: Keep input traces short, use a single-point ground for sensitive nets, and separate digital return currents from amplifier grounds during PCB review.
Point: Build a rail-to-rail ADC driver for a 0–3.3V sensor with low power and 10 kHz bandwidth. Evidence: Target SNR > 60 dB, unity-gain stability into ADC sampling capacitor, and continuous draw under 200 µA. Explanation: The part's RRIO, moderate GBW, and low Iq align with these targets provided layout and loading are controlled.
Point: A compact non-inverting buffer with input filter and series output R is recommended. Evidence: Expected measured gain = 1.00 ±0.1%, bandwidth ~100–200 kHz in closed-loop, and step response rise time consistent with 0.7 V/µs slew. Explanation: Use the schematic below, validate with the listed test steps, and consult the troubleshooting matrix for common symptoms.
Simple reference schematic (textual):
Vin ---||---+---(+)OPAMP(-)---+--- Vout ---[Rseries 10Ω]--- ADC
Cfilter 10nF | |
Rfb 10k GND
| Symptom | Likely cause | Corrective action |
|---|---|---|
| Ringing on step | Excess Cload | Add 10–50 Ω series R at output |
| Gain error | Incorrect feedback network | Re-measure Rfb/Rg, shorten feedback trace |
| High noise | Long input trace or poor decoupling | Shorten traces, local 0.1µF decoupling |
Point: Use a checklist to decide fit. Evidence: Good fit when required GBW ≤ 1 MHz, quiescent current budget ~100 µA per amp, and RRIO is mandatory. Explanation: If the design requires multi-MHz bandwidth, heavy output drive into low-ohm loads, or ultra-low noise below the part’s floor, evaluate higher-speed or specialized amplifiers instead.
Point: Standardized tests enable pass/fail decisions. Evidence: Recommended tests: DC offset (±mV tolerance), supply current (±20% of typical), unity-gain stability (no oscillation), closed-loop gain accuracy (±0.5%), slew/step response matching expected rise times. Explanation: For each test record equipment, Vcc, load, input amplitude, expected numbers, and corrective steps if outside tolerances.
Point: The device offers a balanced mix of low power, RRIO, and medium-bandwidth operation. Evidence: With GBW near 1 MHz, slew ~0.7 V/µs, and ~80 µA quiescent current, it maps well to battery-sensitive sensor and portable designs. Explanation: Designers should run the lab checklist, verify capacitive-load behavior on their boards, and use the selection checklist to confirm fit.
The moderate GBW and 0.7 V/µs slew mean the amplifier can drive ADC sampling networks for low-to-moderate sample rates without significant distortion. Designers should verify closed-loop bandwidth is at least five times the highest input frequency to preserve amplitude and phase fidelity; add series R if driving capacitive ADC inputs.
Use a short production test sequence: measure supply current at Vcc, verify DC offset with specified source impedance, perform a unity-gain step test for stability and slew, and confirm closed-loop gain accuracy with a 1 kHz sine. Set pass/fail tolerances based on system error budget.
Layout issues appear when feedback loops are long or decoupling is distant, leading to oscillation or excess noise. Keep feedback traces minimal, place decoupling capacitors close to pins, and use series output resistance for cable or LCD loads; validate on the target PCB early in development.




